Research
An Integrated Research Approach
The Centre for Advanced Training Systems (ATS) has a strong research focus, which is applied to all aspects of our activities.
Our research approach is integrated into all phases of project development, from initial project conception through to resource delivery.
Within each project we collect data and integrate the following research aspects:
Training Tool Development

We integrate evidence-based and scientifically-established concepts to address unmet needs, which consider individual training outcomes, trainer objectives and organisational requirements.
Specific Aspects:
- User attitudes & concerns
- Existing resources
- Technology options & features
- Organisation capacity & resources
User Testing & Feedback

We take an active approach to gather data from users throughout the development process and to assess the final training tool.
Specific Aspects:
- User experience
- Tool optimisation
- Training efficacy & functionality
Dissemination & Implementation

We work with organisations to ensure that the new training tool is accessed by users to deliver outcomes.
Specific Aspects:
- Hardware acquisition & logistics
- Dissemination strategy
- Supporting documentation & content
- User analytics & uptake
Further, we conduct scientific research studies to improve and optimise teaching and learning within The University of Newcastle and our partner organisations.
Our focus is on addressing specific questions, to improve our understanding of how people learn and interact with technology. We directly test and compare different training delivery systems to identify the benefits and disadvantages of each modality. As experts in physiological stress, we also investigate the physiological effects of technology on the body during teaching and learning (e.g. heart rate, respiratory rate and physiological arousal).
Latest News

Using virtual reality to improve stroke treatment: TACTICS VR – Telehealth
NSW Health Agency for Clinical Innovation featured TACTICS VR - Telehealth in the Clinican Connect newsletter. Access here: https://aci.health.nsw.gov.au/about/clinician-connect/feature/2021/virtual-reality-telestroke-training Virtual reality is proving to be a...

Performance Edge VR effectively trains controlled breathing skills in virtual reality – read our latest research publication
Our latest research manuscript is now published in PLoS ONE. Access the article: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245068 The paper describes the conceptual design of Performance Edge VR, a virtual reality-based stress management...

Is virtual reality (VR) better than 2D training? Four evidence-backed value areas supporting the use of VR as a training modality
Within my role I am involved in creating and validating novel Virtual Reality (VR) training applications and often find myself discussing the use of the technology, including its benefits and value as a training modality. A frequent topic that comes up when speaking...
Examples of Current & Ongoing Research
- Effectiveness of respiratory control training using a biofeedback-enabled, virtual reality training module. How many sessions are required to reach competency? How long are skills retained?
- What is the benefit of an immersive learning environment for controlled breathing training? Comparison of skills acquisition of controlled breathing using an immersive VR environment and a 2D screen-based approach.
- Can procedural training in VR reduce the number of iterations required for procedural training in the real world?
- How stressful is virtual reality? Correlating immersion, fidelity, performance and threat in mixed-reality applications with physiological responses.
- Should XR-based technologies be integrated into tertiary education? How? Moving past early adopter enthusiasm: General attitudes and concerns towards mixed-reality technology as a teaching tool within the University system.
- How can XR-based technologies be integrated and supported at an institutional level? Scaling mixed-reality technology as a sustainable and supported teaching tool across multiple teaching courses and classes.

Example Publications
- Development of a modular stress management platform (Performance Edge VR) and a pilot efficacy trial of a bio-feedback enhanced training module for controlled breathing. Kluge et al. 2021. PLoS ONE.
- A comparative study of cybersickness during exposure to virtual reality and “classic” motion sickness: are they different? Gavgani et al. 2018. J Appl. Physiol.
- Cybersickness-related changes in brain hemodynamics: A pilot study comparing transcranial Doppler and near-infrared spectroscopy assessments during a virtual ride on a roller coaster. Gavgani et al. 2018. Physiol. Behav.
- Effects of visual flow direction on signs and symptoms of cybersickness. Gavgani et al. 2017. PLoS ONE.
- Profiling subjective symptoms and autonomic changes associated with cybersickness. Gavgani et al. 2017. Auton. Neurosci.
- Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Nalivaiko et al. 2015. Physiol Behav.
If you are interested in developing a specific training programme in collaboration with the Centre for Advanced Training Systems (ATS), we would like to hear from you. Please send us an email or access the Contact Us page to get in touch with our team.
Designing, Developing and Implementing Next Generation Training

Mailing list signup
Join our mailing list to receive information on Centre updates and to be involved in testing of new applications.